首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19151篇
  免费   1918篇
  国内免费   1155篇
  2024年   17篇
  2023年   419篇
  2022年   284篇
  2021年   579篇
  2020年   736篇
  2019年   918篇
  2018年   891篇
  2017年   730篇
  2016年   891篇
  2015年   799篇
  2014年   905篇
  2013年   1889篇
  2012年   788篇
  2011年   821篇
  2010年   761篇
  2009年   816篇
  2008年   1003篇
  2007年   949篇
  2006年   892篇
  2005年   814篇
  2004年   820篇
  2003年   761篇
  2002年   718篇
  2001年   529篇
  2000年   513篇
  1999年   389篇
  1998年   375篇
  1997年   297篇
  1996年   252篇
  1995年   241篇
  1994年   204篇
  1993年   185篇
  1992年   163篇
  1991年   119篇
  1990年   100篇
  1989年   74篇
  1988年   54篇
  1987年   59篇
  1986年   33篇
  1985年   50篇
  1984年   74篇
  1983年   48篇
  1982年   63篇
  1981年   47篇
  1980年   29篇
  1979年   27篇
  1978年   27篇
  1977年   27篇
  1976年   12篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
991.
The binary nucleation of phase-separated Lennard-Jones clusters was analysed under various system conditions using molecular dynamics simulations. The modified potential model provides a simple gateway to observe non-wetting behaviour and imitates the more complex interactions of non-miscible substances. Thus, not only the transition from ideally mixed clusters to so-called ‘Janus’ particles, but also the structural aspects and dynamic formation processes of nanoscopic droplets are directly observable from the gas phase. Various shapes and sizes of these inhomogeneous clusters have been found via simple tuning of system parameters. From this analysis, we gained further insight into the direct formation of ‘Janus’ particles from the gas phase.  相似文献   
992.
3-(4-Fluorophenyl)-N-((4-fluorophenyl)sulphonyl)acrylamide (FFSA) is a potential tubulin polymerisation inhibitor. In this article, a theoretical study of the binding between FFSA and tubulin in colchicine site was carried out by molecular docking, molecular dynamics (MD) simulation and binding free energy calculations. The docking calculations preliminarily indicate that there are three possible binding modes 1, 2 and 3; MD simulations and binding free energy calculations identify that binding mode 2 is the most favourable, with the lowest binding free energy of ? 29.54 kcal/mol. Moreover, our valuable results for the binding are as follows: the inhibitor FFSA is suitably located at the colchicine site of tubulin, where it not only interacts with residues Leu248β, Lys254β, Leu255β, Lys352β, Met259β and Val181a by hydrophilic interaction, but also interacts with Val181α and Thr179α by hydrogen bond interaction. These two factors are both essential for FFSA strongly binding to tubulin. These theoretical results help understanding the action mechanism and designing new compounds with higher affinity to tubulin.  相似文献   
993.
Charge-transfer-to-solvent excited iodide–polar solvent molecule clusters, [I(Solv)n]*, have attracted substantial interest over the past 20 years as they can undergo intriguing relaxation processes leading ultimately to the formation of gas-phase molecular analogues of the solvated electron. In this review article, we present a comprehensive overview of the development and application of state-of-the-art first-principles molecular dynamics simulation approaches to understand and interpret the results of femtosecond photoelectron spectroscopy experiments on [I(Solv)n]* relaxation, which point to a high degree of solvent specificity in the electron solvation dynamics. The intricate molecular details of the [I(Solv)n]* relaxation process are presented, and by contrasting the relaxation mechanisms of clusters with several different solvents (water, methanol and acetonitrile), the molecular basis of the solvent specificity of electron solvation in [I(Solv)n]* is uncovered, leading to a more refined view of the manifestation of electron solvation in small gas-phase clusters.  相似文献   
994.
Catalytic activities of neutral and charged palladium (Pd) nanoparticles are compared for hydrogen reduction half-reaction. In this work the sequential H2 dissociation from the surface of a Pd13H24 cluster is systematically studied by ab initio molecular dynamics (AIMD) at the density functional theory level. AIMD simulation is launched by preparing initial values of momenta of all nuclei in the model corresponding to a temperature range of 0–1700 K. AIMD simulation provides the trajectories of all the atoms in the cluster. A sequential H2 desorption up to seven molecules is observed from the cluster surface due to thermal motion of nuclei. Modifications of total charge on the neutral Pd13H24 cluster model are found to affect surface H2 desorption behaviour. A desorption rate of H2 molecule on both neutral and charged Pd13H24 clusters is compared to the data of Pt13H24 cluster reported previously. The H2 desorption energy on all the investigated clusters is also determined. The results reveal that Pd13 cluster presents a higher catalytic activity than Pt13 cluster.  相似文献   
995.
A new implementation of molecular dynamics simulation is presented. We employed policy-based design to achieve static polymorphism within our simulation programs. This technique provides flexibility and extensibility without additional if-statement branching in the simulation program development. It is shown that policy-based implementation prevents computational performance degradation. We used a fine-grained domain decomposition scheme to parallelise the simulation program. The smaller size decomposition reduces the total amount of inter-processing-core communication and affords good scalability for parallel calculation of short-range forces. The calculation of long-range interactions limits the total scalability. For enhanced performance at high levels of parallelism, the calculation methods for long-range interactions should be improved.  相似文献   
996.
Various experimental and simulation studies have suggested that the presence of amphiphilic molecules in aqueous solutions substantially perturbs the tetrahedral hydrogen-bond (H-bond) network of neat liquid water. Such structural perturbation is expected to impact H-bond lifetime of liquid water. Tetramethylurea (TMU) is an example of an amphiphile because it possesses both hydrophobic and hydrophilic moieties. Molecular dynamics simulations of (water+TMU) binary mixtures at various compositions have been performed in order to investigate the microscopic mechanism through which the amphiphiles influence the H-bond dynamics of liquid water at room temperature. Present simulations indicate lengthening of both water–water H-bond lifetime and H-bond structural relaxation time upon addition of TMU in aqueous solution. At the highest TMU mole fraction studied, H-bond lifetime and structural relaxation time are, respectively, ~4 and ~8 times longer than those in neat water. This is comparable with the slowing down of H-bond dynamics for water molecules confined in cyclodextrin cavities. Simulated relaxation profiles are multi-exponential in character at all mixture compositions, and simulated radial distribution functions suggest enhanced water–water and water–TMU interactions upon addition of TMU. No evidence for complete encapsulation of TMU by water H-bond network has been found.  相似文献   
997.
The effect of replacing bis(trifluoromethylsulphonyl)imide ([NTf2]) by hexafluorophosphate ([PF6]) in room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide ([BMIm][NTf2]) confined between two gold interfaces is herein reported through molecular dynamics simulations using all-atom non-polarisable force-fields. Five systems were studied ranging from pure [BMIm][NTf2] to pure [BMIm][PF6], with [PF6] molar fractions of 0, 0.125, 0.25, 0.375 and 0.5. Special attention was drawn to investigate the impact of the [PF6] anion on the IL, in particular on the first layers of the liquid in close contact with the solid gold surface.  相似文献   
998.
999.
Satoru G. Itoh 《Molecular simulation》2015,41(10-12):1021-1026
In order to predict the native structures of proteins and peptides and to investigate the functions of these biomolecules, it is essential to realise efficient sampling in the conformational space. We had recently proposed a new generalised-ensemble algorithm, which is referred to as the replica-permutation method (RPM), to sample the conformational space efficiently. We introduce this RPM and demonstrate its usefulness by applying to three systems: particles in a double-well potential energy, Met-enkephalin in a vacuum, and a C-peptide analogue of ribonuclease A in explicit water. Replica-exchange simulations were performed to compare their results with the results of the replica-permutation simulations. It is shown that the RPM sampled not only the temperature space but also the conformational space more efficiently than the replica-exchange method. The folding pathway of C-peptide is also presented.  相似文献   
1000.
Protein aggregates can be stabilised by disulphide bridges. The whey protein β-lactoglobulin (β-lac) contains a disulphide bridge and a free cysteine that are shielded from the solvent by an α-helix. These groups are important in the thiol–disulphide exchange that occurs during aggregation and gelation of β-lac. Replica exchange molecular dynamics simulations show that the exposure mechanism is very different for the two buried groups. While melting of the α-helix enhances exposure of the free cysteine, it does not for the buried bridge. These findings shed light on the molecular mechanism of the first step of β-lac denaturation and aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号